

World Journal of Current Medical and Pharmaceutical Research

Content available at www.wjcmpr.com

ISSN: 2582-0222

REVIEW ON PHARMACEUTICAL SUPPLY CHAIN RESILIENCE: STRATEGIES FOR MANAGING DISRUPTIONS AND ENSURING

Sanket J Soni^{1*}, Ankitkumar N Patel²¹*Associate Director, Department of Project and Portfolio Management, Amneal Pharmaceuticals, New Jersey, USA.² Director of Formulation, Department of Formulation R&D, Amneal Pharmaceuticals, New Jersey, USA.

Article History	Abstract
Received on: 19-08-2024	The pharmaceutical supply chain is critical to ensuring the availability of life-saving medications and healthcare products. However, it is highly vulnerable to disruptions, including natural disasters, economic and political instabilities, supply chain vulnerabilities, and technological failures. This review explores strategies for enhancing resilience within the pharmaceutical supply chain, focusing on risk management, supplier diversification, inventory management, and the integration of advanced technologies such as IoT, AI, and block chain. Case studies, including the impact of the COVID-19 pandemic, natural disasters like Hurricane Maria, and geopolitical challenges like the US-China trade war, are analyzed to extract valuable lessons and strategies that proved effective in maintaining supply chain continuity. The review also looks ahead to future trends, emphasizing the importance of digital transformation, sustainability, and ethical sourcing in building a more robust and adaptable pharmaceutical supply chain. The findings underscore the need for proactive disruption management, strategic diversification, and sustainable practices to ensure the uninterrupted delivery of essential healthcare products.
Revised on: 06-09-2024	
Accepted on: 28-10-2024	

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License.

Copyright © 2024 Author(s) retains the copyright of this article.

*Corresponding Author

Sanket J Soni

DOI: <https://doi.org/10.37022/wjcmpr.v6i3.341>

Introduction

The pharmaceutical supply chain is a complex network that involves the production, distribution, and delivery of medications and healthcare products to patients [1]. It encompasses various stages, from raw material procurement and drug manufacturing to distribution and dispensing at pharmacies or healthcare facilities. This supply chain is critical because it ensures that life-saving medications are available when and where needed, playing a pivotal role in public health and the healthcare system [2].

The pharmaceutical supply chain involves multiple stakeholders, each playing a crucial role in ensuring the smooth flow of products from manufacturers to patients. Key components include [3]:

- **Manufacturers:** Responsible for producing active pharmaceutical ingredients (APIs) and finished drug products.
- **Suppliers:** Provide raw materials, packaging, and other essential components required for drug manufacturing.

- **Distributors:** Handle the logistics and distribution of pharmaceutical products to pharmacies, hospitals, and other healthcare providers.
- **Healthcare Providers:** Hospitals, clinics, and pharmacies that dispense medications to patients.
- **Regulatory Bodies:** Oversee the compliance of products and processes with health and safety standards.

Importance of Supply Chain Resilience

Resilience in the pharmaceutical supply chain refers to the ability to adapt to and recover from disruptions while maintaining the continuous supply of essential medications. This resilience is crucial because the pharmaceutical supply chain is inherently vulnerable to a range of disruptions, including natural disasters, pandemics, geopolitical issues, and supply shortages. A resilient supply chain ensures that patients have uninterrupted access to medications. This is critical for maintaining public health and preventing crises, particularly in situations where delays or shortages could lead to severe health consequences [4].

Disruptions in the pharmaceutical supply chain can profoundly impact public health and the economy. For example, shortages of critical medications can lead to treatment delays, worsening of diseases, and increased mortality rates. Economically, disruptions can lead to increased healthcare costs, loss of

revenue for pharmaceutical companies, and broader economic instability. Additionally, supply chain failures can erode public trust in healthcare systems, making resilience a priority for public health authorities and the pharmaceutical industry [5].

2. Scope and Objectives of the Review

This review aims to explore and analyse various strategies for enhancing the resilience of the pharmaceutical supply chain. The article will examine the common disruptions that affect the supply chain, assess the effectiveness of different mitigation strategies, and discuss future trends and innovations that can further strengthen supply chain resilience. By focusing on these aspects, the review aims to provide insights into how the pharmaceutical industry can better prepare for and respond to disruptions, ensuring continuity in the delivery of essential healthcare products. The ultimate goal is to highlight best practices and offer recommendations to help stakeholders across the supply chain build a more robust and adaptable system [6].

3. Common Disruptions in the Pharmaceutical Supply Chain

Natural Disasters and Environmental Factors

Examples: Earthquakes, Floods, Pandemics (e.g., COVID-19). Natural disasters such as earthquakes, floods, hurricanes, and global health crises like pandemics can severely disrupt the pharmaceutical supply chain. These events can damage manufacturing facilities, interrupt transportation routes, and create labour shortages, leading to delays in production and distribution. For instance, the COVID-19 pandemic exposed vulnerabilities in global supply chains, causing shortages of essential medications and personal protective equipment (PPE) [7]. The widespread impact of these disruptions can be felt across the entire supply chain, from the procurement of raw materials to the delivery of finished products to healthcare providers and patients [8].

Impact on Manufacturing, Distribution, and Supply Continuity The impact of natural disasters and environmental factors on the pharmaceutical supply chain can be profound. Manufacturing facilities may be forced to shut down due to physical damage or supply shortages, leading to production delays and reduced output [9]. Distribution networks can also be disrupted by damaged infrastructure, such as roads and ports, making transporting products to their final destinations difficult. Additionally, these disruptions can cause supply continuity issues, resulting in shortages of critical medications and other healthcare products, which can have severe consequences for patient care and public health [10].

Economic and Political Disruptions

Trade Restrictions, Tariffs, and Geopolitical Tensions

Economic and political factors, such as trade restrictions, tariffs, and geopolitical tensions, can create significant challenges for the pharmaceutical supply chain. Trade restrictions and tariffs can increase the cost of raw materials and finished products, leading to higher consumer prices and reduced manufacturer profit margins. Geopolitical tensions, such as conflicts between countries, can disrupt trade routes and supply chains, making it difficult to source necessary materials or deliver products to key markets. These disruptions can also lead to uncertainty and instability in the

supply chain, making it challenging for companies to plan and execute their operations effectively [11].

Effects of Economic Downturns and Political Instability

Economic downturns and political instability can further exacerbate supply chain disruptions. During economic recessions, reduced consumer spending and investment can lead to decreased demand for pharmaceuticals, forcing companies to cut back on production and reduce inventory levels. Political instability, such as government changes or civil unrest, can also disrupt the regulatory environment, making it difficult for companies to comply with changing regulations and maintain operations. These factors can create a volatile environment for the pharmaceutical supply chain, increasing the risk of disruptions and making it more challenging to ensure the continuous supply of essential medications [12].

Supply Chain Vulnerabilities

Dependency on Single-Source Suppliers One of the critical vulnerabilities in the pharmaceutical supply chain is the dependency on single-source suppliers for critical materials or components. This reliance can create significant risks if the supplier experiences production issues, regulatory challenges, or other disruptions that prevent them from delivering the necessary products [13]. For example, suppose a sole supplier of a critical active pharmaceutical ingredient (API) faces manufacturing problems. In that case, the entire supply chain can be affected, leading to shortages of the final drug product. Diversifying suppliers and developing contingency plans are essential strategies for mitigating this risk [14].

Just-in-Time Inventory Models and Their Risks The just-in-time (JIT) inventory model, while efficient in reducing inventory costs, can also create vulnerabilities in the pharmaceutical supply chain [15]. JIT relies on receiving materials and components "just in time" for production, minimising the amount of inventory held at any given time. However, this approach leaves little room for error or delay. Any disruption in the supply chain, such as a delay in receiving materials, can halt production and lead to supply shortages. While JIT can reduce costs and improve efficiency, it also requires a highly reliable and responsive supply chain, which can be challenging to maintain in the face of disruptions [16].

Technological Disruptions

Cybersecurity Threats and Data Breaches The increasing reliance on digital technologies and interconnected systems in the pharmaceutical supply chain has made it more vulnerable to cybersecurity threats and data breaches. Cyberattacks can compromise sensitive data, disrupt operations, and cause significant financial losses. For example, a cyberattack on a pharmaceutical company's manufacturing or distribution system could result in intellectual property theft, data manipulation, or disruption of production processes. Ensuring robust cybersecurity measures and data protection protocols is critical to safeguarding the supply chain from these threats [17].

Technological Failures and Their Impact on Operations

Technological failures, such as software glitches, hardware malfunctions, or system outages, can also disrupt the pharmaceutical supply chain. These failures can lead to production delays, inventory management issues, and

communication breakdowns across the supply chain. For instance, a malfunction in an automated manufacturing system could halt production, leading to delays in product availability. Similarly, issues with inventory management software could result in inaccurate stock levels, leading to stock outs or overstocking of products. Ensuring that technology systems are reliable, regularly maintained, and supported by contingency plans is essential for minimising the impact of technological disruptions on supply chain operations [18].

Table 1: Summarising Common Disruptions in the Pharmaceutical Supply Chain

Category	Type of Disruption	Impact on Supply Chain
Natural Disasters and Environmental Factors	Earthquakes, Floods, Pandemics (e.g., COVID-19)	- Production delays - Distribution interruptions - Supply continuity issues leading to shortages of critical medications
Economic and Political Disruptions	Trade Restrictions, Tariffs, Geopolitical Tensions	- Increased costs - Difficulty in sourcing materials - Challenges in maintaining operations and planning
	Economic Downturns, Political Instability	- Decreased production - Regulatory compliance challenges - Increased risk of supply chain disruptions
Supply Chain Vulnerabilities	Dependency on Single-Source Suppliers	- Potential supply chain collapse if the single-source supplier is disrupted - Shortages of final drug products
	Just-in-Time Inventory Models	- Production halts if materials are delayed - Increased risk of supply shortages
Technological Disruptions	Cybersecurity Threats, Data Breaches	- Loss of sensitive data - Disruption of manufacturing and distribution processes - Financial and reputational damage
	Technological Failures	- Production delays - Inventory management issues - Communication breakdowns across the supply chain

3. Strategies for Managing Disruptions

Risk Assessment and Management

Identifying Potential Risks and Vulnerabilities in the Supply Chain Effective risk management begins with

identifying potential risks and vulnerabilities within the pharmaceutical supply chain. This includes assessing internal and external threats, such as supplier reliability, geopolitical instability, natural disasters, and technological failures. Identifying these risks allows companies to develop targeted strategies to mitigate their impact [19].

Tools and Methodologies for Effective Risk Assessment

(e.g., SWOT Analysis, FMEA) Several tools and methodologies can be employed to conduct thorough risk assessments. SWOT analysis (Strengths, Weaknesses, Opportunities, Threats) helps in understanding the internal and external factors that could impact the supply chain. Failure Modes and Effects Analysis (FMEA) is another valuable tool that systematically evaluates potential failure points in the supply chain processes and the effects of these failures. Companies can prioritize risks and develop strategies to address them proactively [20].

Diversification of Suppliers and Manufacturing Sites

Importance of Having Multiple Suppliers and Geographically Diverse Manufacturing Locations

Diversification is a critical strategy in building supply chain resilience. Relying on a single supplier or manufacturing location increases vulnerability to disruptions. Companies can reduce the risk of supply interruptions by having multiple suppliers and spreading manufacturing across different geographical locations. This approach ensures that if one supplier or location is compromised, others can continue operating, maintaining the product flow [21].

Case Studies of Companies that Have Successfully Diversified Their Supply Chains Several pharmaceutical companies have successfully implemented diversification strategies. For example, during the COVID-19 pandemic, companies with diversified supply chains were better able to maintain production and distribution than those with concentrated operations. Case studies can illustrate how diversification has helped companies navigate disruptions and maintain continuity in their supply chains [22].

Inventory Management and Stockpiling

Balancing Just-in-Time and Just-in-Case Inventory Models

Effective inventory management requires balancing just-in-time (JIT) and just-in-case (JIC) inventory models. While JIT minimizes costs by reducing inventory levels, it leaves little room for error in case of disruptions. On the other hand, JIC involves maintaining higher inventory levels as a buffer against supply chain interruptions. The key is to find an optimal balance between these models, ensuring that there is enough inventory to cover unexpected disruptions without incurring excessive carrying costs [23].

Strategic Stockpiling and Safety Stock Levels for Critical Products

Strategic Stockpiling involves maintaining safety stock levels for critical products to ensure supply is not interrupted during a disruption. This is particularly important for life-saving medications and essential healthcare products. Companies must carefully determine the appropriate safety stock levels based on demand forecasts, lead times, and risk assessments. Strategic stockpiling can prevent stockouts and ensure critical products remain available during disruptions [24].

Technology and Data Analytics

Use of Advanced Analytics and AI for Predictive Modelling and Risk Management Advanced analytics and artificial intelligence (AI) are powerful tools for enhancing supply chain resilience. Predictive modeling using AI can identify potential disruptions before they occur, allowing companies to take preemptive action. Data analytics can provide real-time insights into supply chain performance, enabling more accurate forecasting and more informed decision-making during disruptions. These technologies help companies to anticipate risks and respond quickly, minimizing the impact on the supply chain [25].

Role of Block chain in Enhancing Transparency and Traceability Block chain technology can significantly enhance transparency and traceability in the pharmaceutical supply chain. By providing a secure, immutable record of transactions, block chain ensures that every step of the supply chain is visible and verifiable. This transparency helps to prevent fraud, reduce the risk of counterfeit products, and improve the overall security of the supply chain. In times of disruption, block chain can provide crucial information to trace the source of issues and resolve them quickly [26].

Collaboration and Communication

Building Strong Partnerships with Suppliers and Stakeholders Collaboration is vital to managing disruptions effectively. Building strong partnerships with suppliers and stakeholders ensures that all parties are aligned and can work together to address challenges. These partnerships enable better coordination and resource sharing during disruptions, helping maintain supply continuity [27].

Effective Communication Strategies During Disruptions Clear and timely communication is essential during disruptions. Companies must have communication plans to keep all stakeholders informed about the status of the supply chain, potential impacts, and the steps to mitigate them. Effective communication helps manage expectations, reduce uncertainty, and ensure that all parties work towards a common goal [28].

Regulatory Compliance and Flexibility

Navigating Regulatory Requirements During Crises During disruptions, navigating regulatory requirements can be challenging. Companies must stay informed about changes in regulations and ensure that their operations remain compliant. This may involve working closely with regulatory bodies to obtain necessary approvals or waivers to continue operations [29,30].

Strategies for Maintaining Compliance While Adapting to Changing Circumstances Flexibility is crucial in maintaining compliance while adapting to changing circumstances. Companies may need to adjust their processes, adopt new technologies, or modify their supply chain strategies to remain compliant with regulations. A flexible approach allows companies to respond to disruptions without compromising on regulatory standards, ensuring that products remain safe and effective [31].

4. Case Studies and Examples

COVID-19 Pandemic

Impact on the Global Pharmaceutical Supply Chain The COVID-19 pandemic profoundly impacted the global pharmaceutical supply chain, exposing vulnerabilities in the production and distribution of essential medications and healthcare products. The pandemic led to widespread disruptions, including shortages of raw materials, delays in manufacturing, and logistical challenges due to lockdowns and restrictions. These disruptions affected the availability of critical drugs, personal protective equipment (PPE), and vaccines, highlighting the fragility of global supply chains and the need for greater resilience [32-34].

Lessons Learned and Strategies that Proved Effective The pandemic provided valuable lessons for the pharmaceutical industry. One of the key takeaways was the importance of supply chain diversification, as companies with multiple suppliers and geographically dispersed manufacturing sites were better able to cope with disruptions. Additionally, the pandemic underscored the need for effective risk management and crisis response planning. Companies with established contingency plans, including strategic stockpiling and robust communication strategies, could adapt more quickly to the changing environment. Collaboration between the public and private sectors, as well as the rapid adoption of digital technologies for supply chain monitoring and management, also played a crucial role in mitigating the impact of the pandemic [35].

Natural Disasters

Case Study of a Major Natural Disaster and Its Impact on Pharmaceutical Supply Natural disasters, such as hurricanes, earthquakes, and floods, have historically caused significant disruptions in the pharmaceutical supply chain. A notable example is Hurricane Maria, which struck Puerto Rico in 2017. Puerto Rico is a major hub for pharmaceutical manufacturing, and the hurricane caused extensive damage to infrastructure, leading to production halts, power outages, and transportation challenges. The disruption had a ripple effect on the global supply of certain drugs and medical devices, particularly those manufactured exclusively in the region [36].

How Companies Managed and Mitigated Disruptions In the aftermath of Hurricane Maria, pharmaceutical companies employed several strategies to manage and mitigate disruptions. These included activating emergency response plans, leveraging alternate manufacturing sites, and collaborating with government agencies to restore operations quickly. Companies also increased their focus on supply chain resilience by diversifying their production locations and investing in backup power and logistics infrastructure. The disaster highlighted the importance of contingency plans and the need for ongoing investments in supply chain resilience to prepare for future natural disasters [37].

Economic Sanctions and Trade Wars

Examples of How Geopolitical Factors Have Disrupted Supply Chains Geopolitical factors, such as economic sanctions and trade wars, have the potential to disrupt pharmaceutical supply chains significantly. For example, the trade war between the United States and China increased tariffs on raw

materials and finished pharmaceutical products, raising production costs and creating uncertainty in the supply chain. Economic sanctions imposed on countries like Iran and Venezuela have also restricted access to essential medications and medical supplies, exacerbating public health crises in these regions [38].

Strategies Employed by Companies to Maintain Continuity

To navigate these geopolitical challenges, pharmaceutical companies have employed various strategies to maintain continuity. One approach is the re-routing of supply chains to

source materials from alternative markets that are not affected by sanctions or tariffs. Companies have also strategically stockpiled critical inputs to buffer against supply disruptions. Additionally, some companies have sought to establish local manufacturing capabilities in regions less affected by geopolitical tensions, reducing reliance on international supply chains. Diplomatic engagement and compliance with global trade regulations have also been crucial in ensuring that essential supplies continue to reach affected regions [39].

Table 2: summarizing the case studies and examples

Disruption Type	Case Study/Example	Impact on Pharmaceutical Supply Chain	Strategies Employed to Manage Disruptions
COVID-19 Pandemic	Global Impact of COVID-19	<ul style="list-style-type: none"> - Shortages of raw materials and critical drugs - Delays in manufacturing and distribution - Logistical challenges due to lockdowns 	<ul style="list-style-type: none"> - Diversification of suppliers and manufacturing sites - Strategic stockpiling - Enhanced communication and collaboration - Rapid adoption of digital technologies
Natural Disasters	Hurricane Maria in Puerto Rico (2017)	<ul style="list-style-type: none"> - Extensive damage to infrastructure - Production halts and power outages - Transportation disruptions 	<ul style="list-style-type: none"> - Activation of emergency response plans - Leveraging alternate manufacturing sites - Collaboration with government agencies - Investment in backup infrastructure
Economic Sanctions and Trade Wars	US-China Trade War and Economic Sanctions on Iran	<ul style="list-style-type: none"> - Increased tariffs on raw materials and finished products - Restricted access to essential medications in sanctioned countries 	<ul style="list-style-type: none"> - Re-routing supply chains to alternative markets - Strategic stockpiling of critical inputs - Establishing local manufacturing capabilities - Diplomatic engagement

5. Future Trends and Emerging Strategies

Digital Transformation and Supply Chain 4.0

Integration of IoT, AI, and Machine Learning in Supply Chain Management The future of pharmaceutical supply chains is being shaped by the integration of advanced digital technologies, often referred to as Supply Chain 4.0. The Internet of Things (IoT), artificial intelligence (AI), and machine learning are transforming how supply chains are managed. IoT devices provide real-time data on the location, condition, and movement of products throughout the supply chain, enabling greater visibility and control. AI and machine learning algorithms analyse this data to optimize processes, identify inefficiencies, and predict potential disruptions. These technologies allow for more agile and responsive supply chains, adapting to changes and mitigating risks more effectively [40].

Predictive Analytics for Proactive Disruption Management Predictive analytics, powered by AI and machine learning, is becoming an essential tool for proactive disruption management. By analyzing historical data and identifying patterns, predictive models can forecast potential disruptions before they occur, such as delays in delivery, equipment failures, or demand spikes. This foresight allows companies to take pre-emptive actions, such as adjusting inventory levels, rerouting shipments, or initiating contingency plans, to minimize the impact of disruptions. As predictive analytics continues to evolve, it will be crucial in enhancing supply chain resilience and ensuring continuity in the face of unforeseen challenges [41].

Sustainability and Ethical Sourcing

Incorporating Sustainability into Supply Chain Resilience Strategies

Sustainability is increasingly recognized as a key component of supply chain resilience. Incorporating sustainable practices into the pharmaceutical supply chain not only helps protect the environment but also enhances the long-term stability of the supply chain. Sustainable practices include reducing waste, minimizing carbon footprints, and optimizing resource use. For example, adopting eco-friendly packaging and energy-efficient manufacturing processes can reduce dependencies on scarce resources and lower operational costs. Moreover, companies prioritising sustainability are better positioned to comply with emerging regulations and meet the growing demand for environmentally responsible products [42].

Importance of Ethical Sourcing and Its Impact on Long-Term Resilience

Ethical sourcing involves ensuring that the materials and components used in the pharmaceutical supply chain are obtained in a socially and environmentally responsible manner. This includes fair labor practices, humane working conditions, and the responsible use of natural resources. Ethical sourcing is critical for maintaining the integrity and reputation of pharmaceutical companies. It also contributes to long-term resilience by reducing the risk of supply chain disruptions due to unethical practices, such as labour strikes, environmental violations, or reputational damage. Companies that invest in ethical sourcing are more likely to build solid and reliable relationships with suppliers and stakeholders, contributing to a more resilient and sustainable supply chain [43].

Conclusion

The pharmaceutical supply chain is essential for maintaining public health, yet it is increasingly susceptible to disruptions from various sources, including natural disasters, economic shifts, and technological failures. Enhancing the resilience of this supply chain requires a multifaceted approach that includes rigorous risk assessment, diversification of suppliers and manufacturing locations, strategic inventory management, and the adoption of advanced digital technologies like IoT, AI, and block chain. The integration of sustainability and ethical sourcing practices further strengthens long-term resilience, ensuring that supply chains remain robust in the face of emerging global challenges. Case studies, such as the responses to the COVID-19 pandemic and natural disasters like Hurricane Maria, provide practical insights into effective strategies for disruption management. As the pharmaceutical industry continues to evolve, embracing these strategies will be crucial for maintaining the continuity and reliability of supply chains, ultimately safeguarding access to essential medications and healthcare products.

Funding

No Funding.

Acknowledgement

Nil

Conflict of Interest

No conflict of interest.

Informed Consent

Not applicable.

Ethical Statement

Not applicable.

Author Contribution

Sanket J Soni, Ankitkumar N Patel both are contributed equally.

References

1. Ivanov D, Dolgui A. Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by the COVID-19 outbreak. *Int J Prod Res.* 2020;58(10):2904-15.
2. Christopher M, Peck H. Building the resilient supply chain. *Int J Logist Manag.* 2004;15(2):1-14.
3. Chopra S, Sodhi MS. Managing risk to avoid supply-chain breakdown. *MIT Sloan Manag Rev.* 2004;46(1):53-61.
4. Sheffi Y, Rice JB Jr. A supply chain view of the resilient enterprise. *MIT Sloan Manag Rev.* 2005;47(1):41-8.
5. Tang CS. Robust strategies for mitigating supply chain disruptions. *Int J Logist.* 2006;9(1):33-45.
6. Pettit TJ, Fiksel J, Croxton KL. Ensuring supply chain resilience: development of a conceptual framework. *J Bus Logist.* 2010;31(1):1-21.
7. Scholten K, Schilder S. The role of collaboration in supply chain resilience. *Supply Chain Manag Int J.* 2015;20(4):471-84.
8. Ivanov D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. *Transp Res Part E Logist Transp Rev.* 2020;136:101922.
9. Craighead CW, Blackhurst J, Rungtusanatham MJ, Handfield RB. The severity of supply chain disruptions: design characteristics and mitigation capabilities. *Decis Sci.* 2007;38(1):131-56.
10. Blackhurst J, Dunn KS, Craighead CW. An empirically derived framework of global supply resiliency. *J Bus Logist.* 2011;32(4):374-91.
11. Tang O, Musa SN. Identifying risk issues and research advancements in supply chain risk management. *Int J Prod Econ.* 2011;133(1):25-34.
12. Wagner SM, Bode C. An empirical investigation into supply chain vulnerability. *J Purch Supply Manag.* 2006;12(6):301-12.
13. Kilpatrick J, Barter L. COVID-19: Managing supply chain risk and disruption. *Deloitte Insights.* 2020. Available from: <https://www2.deloitte.com/global/en/pages/risk/articles/covid-19-managing-supply-chain-risk-and-disruption.html>.
14. Ivanov D. Supply Chain Viability and the COVID-19 pandemic: A conceptual and formal generalisation of four major adaptation strategies. *Int J Prod Res.* 2020;58(10):2904-15.
15. Lee HL. The triple-A supply chain. *Harv Bus Rev.* 2004;82(10):102-12.
16. Manuj I, Mentzer JT. Global supply chain risk management strategies. *Int J Phys Distrib Logist Manag.* 2008;38(3):192-223.
17. Sharma A, Adhikary A, Borah SB. Covid-19's impact on supply chain decisions: Strategic insights from NASDAQ 100 firms using Twitter data. *J Bus Res.* 2020;117:443-9.
18. Sodhi MS, Son B-G, Tang CS. Researchers' perspectives on supply chain risk management. *Prod Oper Manag.* 2012;21(1):1-13.
19. Simchi-Levi D, Schmidt W, Wei Y. From superstorms to factory fires: Managing unpredictable supply-chain disruptions. *Harv Bus Rev.* 2014;92(1/2):96-101.
20. Kim YH, Tang CS. Socially responsible and sustainable supply chains: a framework for analysis. *Oper Res Perspect.* 2015;2:54-64.
21. Handfield RB, Graham G, Burns L. Corona virus, tariffs, trade wars and supply chain evolutionary design. *Int J Oper Prod Manag.* 2020;40(10):1649-60.
22. Araz OM, Choi TM, Olson DL, Salman FS. Data analytics for operational risk management. *Decis Sci.* 2020;51(6):1316-42.
23. Sarkis J. Supply chain sustainability: learning from the COVID-19 pandemic. *Int J Oper Prod Manag.* 2020;41(1):63-73.

24. Manda, P., Popescu, C., Juluri, A. et al. Micronized Zaleplon Delivery via Orodispersible Film and Orodispersible Tablets. *AAPS PharmSciTech* 19, 1358-1366 (2018).
25. Lakshmi Narasimha Rao, K., Praneeth Rao, K. Development and Validation of a Stability-Indicating LC Method for Determination of Bexarotene in Softgel Dosage Formulation. *Chromatographia* 80, 1211-1224 (2017).
26. Kakulamarri PR, Alikatte KL, Mateti UV (2016) Transdermal Iontophoresis of Non-Polar Drugs: A Mini Review. *J Pharm Drug Deliv Res* 5:3
27. Kakulamarri PR, Rao KLN (2017) Enhanced Bioavailability and Anticancer Activity of Vitamin Analogs. *J Bioequiv Availab* 9: 439-441.
28. Bode C, Macdonald JR. Stages of supply chain disruption response: direct, constraining, and restoring response capabilities. *Int J Phys Distrib Logist Manag.* 2017;47(2/3):281-99.
29. Paul SK, Chowdhury P. A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. *Int J Phys Distrib Logist Manag.* 2020;51(2):104-25.
30. Schotter AP, Mudambi R, Doz YL, Gaur A. Boundary spanning in global organizations. *J Manage Stud.* 2017;54(4):403-21.