

World Journal of Current Medical and Pharmaceutical Research

Content available at www.wjcmpr.com

ISSN: 2582-0222

REVIEW: GENE OF 16S rRNA IS THE GOLD STANDARD TO DIAGNOSE BACTERIA

Hanaa Daaj Khalaf Al-Mozan

University of Thi-Qar, College of Science, Department of Biology, Iraq

Article History

Received on: 15-06-2023

Revised on: 04-07-2023

Accepted on: 26-08-2023

Abstract

The success of the biochemical tests depends on the purity of the culture, and this requires special preparations for obtaining, transporting and purifying of sample, use of selective media, duration of incubation, temperatures and others and all this takes time and effort. It may require sending slow-growing pathogens to laboratories that provide the requirements for their growth, but they may be far from the source of their collection, and thus it takes a long time to diagnose pathogen. Also, biochemical tests reflect the activity of the gene responsible for the production of a particular substance, and this gene may be present, but it does not work, and therefore the result may be a misdiagnosis. Gene of 16S rRNA is found in all bacteria, and it contains stable regions through which bacteria can be identified, and other variable regions through which bacterial species can be distinguished. As well as, diagnosis of 16S rRNA gene does not require the requirements that are required by biochemical tests for the diagnosis of bacteria, and mutations that occur in this gene do not affect its basic function, which is diagnosis, so 16S rRNA gene is the gold standard for bacterial diagnosis. In principle, it is possible to rely on phenotypic characteristics to diagnose bacteria, but confirmatory diagnosis and registration of new species is done through 16S rRNA gene using polymerase chain reaction.

Keywords: Biochemical tests, Isolation of bacteria, Identification of bacteria, 16S rRNA gene, Polymerase chain reaction, Agarose gel electrophoresis, Sequence of gene.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License.
Copyright © 2023 Author(s) retains the copyright of this article.

*Corresponding Author

Hanaa Daaj Khalaf Al-Mozan

Email: hanaa.d@sci.utq.edu.iq

DOI: <https://doi.org/10.37022/wjcmpr.v5i4.283>

Introduction

The treatment of pathogens depends mainly on speed and accuracy in diagnosing those causes (Maurer *et al.* 2017) especially with the rapid emergence of pathogens that are resistant to multiple drugs (Burillo and Bouza 2014).

Routine and advanced morphological and biochemical tests can be used to diagnose bacteria tentatively and not deterministically where these tests are not very accurate (Jesumirhewe *et al.* 2016), as confirmatory diagnosis is achieved using 16S rRNA gene. However, the methods of morphological and biochemical diagnosis require more time (Srinivasan *et al.* 2015) and effort than that required by the conventional PCR diagnosis, where the work is in stages and the results give many possibilities, which requires other steps and other materials that are expensive and may be difficult to obtain, in addition to the need to provide other environments that cannot be provided in routine laboratories to distinguish between bacteria.

Some routinemorphological and biochemical tests require a long time to be implemented, which leads to exacerbation of the disease and death of the patient, and pathogens may be transmitted from the patient to other people (Rizal *et al.* 2020), but there are advanced diagnostic and confirmatory biochemical tests such as analytical profile index (API) (Abd al-Razzaq and Hamim 2019; Beden and Mousa 2022; Al-Hilali and Al-Mozan, 2023) and VITEK®2 system (Abd al-Rida *et al.* 2019; Beden and Mousa, 2022; Dhahir, 2023) save time, effort and cost.

However, the phenotypes and enzymatic activities of each microbe are affected by the conditions that the organism goes through, so they are not stable (Petti *et al.* 2005), thus theconventional and advanced biochemical tests may fail to diagnose bacteria (Ayeni *et al.* 2015) because they give a result of the activity of the gene (useful for measuring the virulence of bacteria) and not to detect the presence of the gene itself (Clarridge 2004) , therefore, it does not give an accurate result on the diagnosis of the identity of bacteria (Gee *et al* 2004) .

The diagnostic gene of bacteria in general, which, by sequencing it, can determine the genus and species of bacteria if the primers used are universal primers, or without sequencing them if the primers are specific primers (Clarridge 2004).The related gene to the diagnosis of bacteria is 16S rRNA gene (Al-Yousif 2022) which is considered confirmed test (Al-Mozan, and Al-Amara 2020) , as it is amplified using the PCR

assay, then the sequence of its sequences is detected, and then the bacterial species is reached using the relevant software. In 1980s, it became possible to accurately diagnose bacteria by comparing the stable parts of the genetic regions, *16S rRNA* gene is considered one of the genes that serve this purpose in a large way, as it is important in the diagnosis and classification of bacterial species (Clarridge 2004).

The stability found in *16S rRNA* gene(Clarridge 2004; Tranet al 2017)is evidence of its importance in cell function, as mutations that affect other genes such as those responsible for the production of enzymes can affect this gene, but in a way that does not lead to the abolition of its basic function (Clarridge 2004).

Gene of *16S rRNA* is amplified by polymerase chain reaction assay (PCR)(Amutha and Kokila 2014) which is practical method by which millions of amplified copies are obtained for one copy of a specific piece of amplification represented by three stages denaturation, annealing, and extension (Joshi and Deshpande 2011).

polymerase chain reaction method has a major role in early detection of many viral, bacterial and cancerous diseases (Joshi and Deshpande 2011; Marx 2016) and It is the basis on which the cloning process and other methods depend (Ghannam and Varacallo 2023). The importance of PCR is evident in forensic evidence, because it requires only a small part of the sample at the crime scene to take it upon itself to amplify it and reveal the truth (Joshi and Deshpande 2011).This method does not require much time(Anahtar et al 2016) or much money and can be saved in routine laboratories (Joshi and Deshpande 2011).

Data source

Many researches refer to the stages of bacterial diagnosis by traditional morphological and biochemical methods, and confirm that it takes a long time and requires materials, equipment, and experienced workers. As the diagnosis of bacteria based on morphologicaland biochemical methods should go through the following steps:

First isisolation of bacteria, where the aim of the isolation and purification process is to obtain a pure culture to avoid errors in diagnosis. Culturing of a sample of soil, water, or something else on the surface of a general medium, such as a nutrient agar, leads to the emergence of multiple colonies of different shapes, sizes, and colors.Pure cultures are prepared by picking up a specific colony with an inoculating needle and transferring it to a solid culture medium. The process of preparing pure cultures is carried out in two ways (Qazangi 2017):

A: Streak plate method which is the simplest method used in the purification of microorganisms, especially bacteria (Irwan et al 2016; Qazangi 2017;Putria et al 2020), and it is done as follows: I- A solid culture medium such as nutrient agar is prepared, sterilized, cooled, then poured into sterile Petri dishes and left until complete solidification. II- A portion of a distinct colony from the mixed culture is transferred by a sterile loop and streaked onto the surface of the prepared solid medium(Qazangi 2017).

B: Pour plate method which is the second method for obtaining isolated single colonies (Hunt et al 2017;Qazangi 2017). Where a smear from one of the colonies is mixed by loop with a solid culture medium prepared in test tubes after

cooling it to 50°C, shortly before solidification, then the mixture of bacteria and the medium is poured into sterile petri dishes and incubated at 37°C for 24 hours, and colonies are grown on the medium appear singular and identical or very similar. A series of dilutions can be made in the culture medium before pouring it into petri dishes, in order to reduce the number of colonies that grow on the medium.

Second isidentification of bacteria which includes: A- Morphological test: The colonies are growing on the solid culture medium differ in size, shape and color if they belong to different bacterial genera or species.The colony can be distinguished with the naked eye,as the colony consists of a large number of cells. However, These cells are characterized by their high transparency, as they are not clear when seen under the microscope, also these cells cannot be distinguished from the glass slide, therefore, they must be stained.

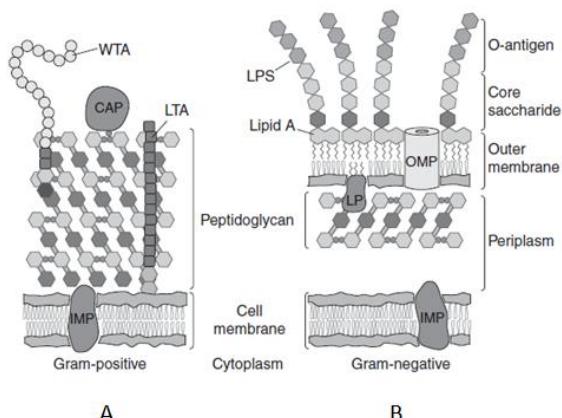
The main goal of staining is to make the cells distinctly visible under the microscope.The staining also helps for distinguishing the external forms of the bacteria and some of its parts such as spores and capsules.Dyes can be divided on the basis of the purpose of the dyeing process into simple staining, differential stains, negative stains, and special stains. Differential stains are the most common in laboratories, as these dyes are useful for distinguishing bacteria into two or more groups depending on the color of the acquired dye.

I-Differential stains, Gram's stain, acid fast stain, and Giemsa stain are examples on these stains. In this stains, more than one dye is used during stages of dyeing, as a result, bacterial cells acquire the color of one of these dyes, not all of theused dyes. It is worth mentioning that Gram's stain is the most widely used stain in laboratories. **A- Gram's stain** , this stain is named after its discoverer, a Danish physician Christian Gram, in 1883. It is made of crystal violet, iodine solution, ethanol, and safranin stain. It is performed as follows:1- Bacterial smear is prepared and fixed by heat, and several drops of crystal violet is added to it and left for one minute.2- The excess dye is washed off with tap water or using a wash bottle.3- Drops of iodine solution are added to the bacterial smear and left for one minute.4- The excess dye is washed with water as well.5- A few drops of ethyl alcohol are added and left for 30 seconds, then washed with water.6- Drops of safranin dye are added to the smear and left for 30 seconds, then washed with water.7- The slide is dried and examined with a micro lens, then with an oil lens.If bacteria acquired the color of the first dye (crystal violet), it appears with purple color and it is considered positive for gram stain. But if it acquires the color of the second dye(safranin), it appears with red color, and it is negative for gram stain(Qazangi 2017).

Some types of bacteria retained the dye crystal violet and appeared under the microscope withpurple color, while others retained the safranin dye and appeared under the microscope with red color due to the discrepancy in the chemical composition of the cell wall between these two types of bacteria. The cell wall of gram-negative bacteria contains a high percentage of fatty substances that are removed by adding alcohol, which leads to the exudation of the crystal-iodine complex from the cell to the outside, so the cell is ready to receive another dye (safranin) (Silhavy et al. 2010 and Qazangi 2017).

It should be mentioned that cell wall of Gram negative bacterium is thinner than Gram positive bacterium (Mai-Prochnow *et al* 2016).

Where this method was discovered by scientist Christian Gram. In 1884 Christian Gram found a method for dividing all existing bacteria into two groups on the basis of their cell envelope by staining them. This stain was called Gram stain (Silhavy *et al.* 2010). The bacteria that retain with this dye are known as Gram-positive and are represented by *Staphylococcus aureus* bacteria (Silhavy *et al.* 2010; Romaniuk and Cegelski 2015; Devlynne *et al* 2018; Elma *et al.* 2020) as one example on it. As for the bacteria that do not retain this dye, they are known as Gram-negative bacteria and *Escherichia coli* is represent one of the examples on these bacteria (Silhavy *et al.* 2010; Rasheed *et al.* 2014; Jang *et al.* 2017; Jeong *et al.* 2023).


There are three layers in the envelope of Gram-negative bacteria which are outer membrane (OM), the peptidoglycan cell wall, and the cytoplasmic or inner membrane (IM). The outer membrane is characteristic of Gram-negative bacteria, as it is not present in Gram-positive bacteria. It is a bi-lipid layer, devoid of phospholipids, but contains Lipopolysaccharide (LPS) which is considered an endotoxin that associated with Gram-negative bacteria and it is composed of glucosamine disaccharide and six or seven chains of acyl, these chains on two parts which are a polysaccharide core, and O antigen which is an extended chain polysaccharide.

The outer membrane contains proteins like outer membrane proteins (OMPs), some of them are wrapped in a cylindrical shape so that they form pores that contribute to the passive diffusion of some small molecules such as amino acids, and others have another functions.

As for the second layer of the envelope, it is the peptidoglycan, which consists of many units of disaccharide N-acetyl glucosamine-N-acetyl muramic acid, which are linked together by side chains of pentapeptides. The peptidoglycan gives bacteria the ability to maintain their distinctive shape. The peptidoglycan layer is very thin. The peptidoglycan is followed by the so-called periplasm. Periplasm contains proteins and is more viscous than cytoplasm. Periplasm is the source of the material that makes up the envelope. The third layer is The Inner membrane (IM) that consists of two layers of phospholipid. The function of the inner membrane is to transport the materials that are required for the biosynthesis of the envelope. As for Gram-positive bacteria, their envelope does not contain the outer membrane, as the envelope of Gram-positive bacteria begins with many layers of peptidoglycan much more than those layers found in Gram-negative bacteria. The links that bind the peptidoglycan layers to each other differ from those that bind the peptidoglycan layers found in Gram-negative bacteria. The peptidoglycan layers are interspersed with long polymers called teichoic acids which are composed of glycerol phosphate, glucosyl phosphate, or repeats of ribitol phosphate.

Wall teichoic acids covalently linked to peptidoglycans (WTA) and lipoteichoic acids associated with membrane lipids (LTA) are considered types belong to these polymers. The large percentage formed by these polymers in the mass of the Gram-positive cell wall reflects their structural and functional

importance. Many Gram-positive bacteria possess branched stem proteins in the peptidoglycan layer that act as binding sites for covalently linked proteins that play a role in bacterial resistance to beta-lactams (Silhavy *et al.* 2010).

Shape 1: A- Envelope of Gram positive bacteria, B- Envelope of Gram negative bacteria (Silhavy *et al.* 2010)

B- Biochemical tests, the most common tests that should be performed:

1- Catalase test

This assay aims to detect the ability of bacteria to produce catalase (Qazangi 2017; Hartline 2023), which decomposes hydrogen peroxide into oxygen and water (Qazangi 2017; Kaushal *et al* 2018). It is done by adding drops of (3%) hydrogen peroxide to a colony of fresh bacterial culture that is placed on clean slide, and the appearance of bubbles is evidence of a positive test (Qazangi 2017; Al-Mozan 2021; Muktaf, 2022).

2- Oxidase test

This test aims for detection of cytochrome oxidase enzyme that is responsible for transferring electrons from cytochrome to oxygen as a final electron acceptor in the respiratory chain (Wikström *et al.* 2018). A drop of oxidase reagent is mixed with a colony from fresh bacterial culture by a sterile loop on filter paper where result is being positive when the color changes to purple (Qazangi 2017).

The above two tests are general tests, whether for Gram-positive or Gram-negative bacteria, to distinguish between the species of each group.

However, there are tests specific to distinguish between gram positive bacteria (AL-Joda and Jasim 2021), while other IMViC tests are specific to distinguish between gram negative bacteria especially family of enterobacteriaceae (Hemraj *et al.* 2013).

Tests of IMViC derived from the first letters of the tests that aim to diagnose members of enterobacteriaceae family and differentiate between them, these tests are indole test, methyl red test, Voges-Proskauer test, and citrate test.

A: Indole test, this assay aims to test the ability of bacteria to degrade the amino acid tryptophan into pyruvic acid, ammonia, and indole (Aminollah and Supriyanto, 2016; PHE, 2018). The latter (indole) is detected chemically by the Kovacs reagent, which has pale yellow color, as the aldehyde present in the reagent combines with indole to form a complex with red color that collects on the surface of the medium. The importance of this test lies in the fact that there is a limited group of bacteria

that have the ability to analyze tryptophan and form indole, which paves the way for their diagnosis easily through this test. This test can be done in peptone, tryptone, or other media, where the test is performed as follows:

1-The prepared peptone broth in test tubes is inoculated with the bacteria that should be tested and incubated in 37°C for a period of not less than 24 hours.

2- About 0.3 ml of Kovacs reagent is added to each 5ml of cultured peptone broth, mixing of them is done by moving the tube well.. 3- It has been left aside for some time, where As the positive result is the appearance of a pink or red ring, which it is indicating to the presence of indole (Goswami *et al.* 2015 and Qazangi 2017).

B: Methyl red test, this test aims to detect the ability of bacteria to produce a fixed amount of organic acids, as a result of fully ferment glucose, and the test is done as follows:

1- A colony of fresh bacterial culture is cultured in a tube contains methyl red Voges- Proskauer broth(where this broth is used for IMViC test(Aryal 2018a)) and incubated at 35°C for 48 hours.2- A few drops (8-10 drops) of methyl red reagent is added to the cultured tube (Qazangi 2017), the positive result of this test is the appearance of a bright red color (Igbenehgu and Lamikanra, 2014; Qazangi, 2017).

C: Voges-Proskauer test, this test targets bacterial species that have the ability to partially analyze glucose and form an intermediate compound (Acetyl Methyl Carbinol).Acetyl Methyl Carbinol is detected by Voges-Proskauer reagent (Qazangi 2017), where this reagent consists of two solutions, the first contains alpha-naphthol and the second contains potassium hydroxide (Aryal 2018b) where these solutions are important to detect aceton (Aminollah and Supriyanto 2016).Voges-Proskauer test is performed as follows:

1- A colony of fresh bacterial culture is cultured in a tube contains methyl red Voges- Proskauer broth and incubated at 35 °C for 48 hours.

2-About 1-1.5ml of the first solution and 0.5-1ml of the second solution are added to the cultured tube and shake well for a minute to dissolve the largest possible amount of oxygen in the medium which is necessary to oxidize the acetone and show the desired color.The tube is left for at least one hour for development of color into red (Qazangi 2017).

As mentioned above, MRVP test is used to test the ability of bacteria to ferment glucose (Shanmugaraj *et al.* 2021).

D: Citrate test, citrate test aims to detect the ability of bacteria to consume citrate or citric acid as a single source of carbon. There are culture media have been designed for this purpose and are prepared by specialized companies, such as Simmons citrate medium, which contains sodium citrate, as source of carbon and energy, and inorganic compounds, as source of the rest of the nutritional elements needed by bacteria, in addition to bromothymolblue which acts as color guide.Citrate test can be done as follows:

1-The medium is prepared, distributed in tubes, sterilized, and left slanted until solidified.

2- A colony of fresh bacterial culture is cultured in the tube that contains Simmons citrate medium and incubated at 35°C for 48 hours. The incubation period can be extended to 7 days, because some bacterial species slowly consume citrate, and it is worth prolonging the incubation period.The positive result is

a change in the color of the medium from green to blue (Qazangi 2017).

However, morphological and biochemical methods are not as accurate as molecular methods (Kshikhundo and Itumhelo 2016).

16S rRNA geneand its preference over other diagnostic methods

Gene of 16S rRNA is characterized by its unique ability to identify bacterial species(Srinivasan *et al* 2015;Dickson *et al* 2020; Fernández-Barat *et al* 2020) within a sample, especially with regard to taxonomic and phylogenetic studies (Dickson *et al* 2020; Fernández-Barat *et al* 2020), especially that diagnosis of bacteria and the period of its presence in the environment is essential in studies that aim to reveal microbial communities(Lindner and Renard 2013) where16S rRNA gene is very efficient for this role . This gene contains conserved regions interspersed with the nine variable regions(Dickson *et al* 2020;Fernández-Barat *et al* 2020),through the variable regions, it is possible to reach the bacterial species, not just the bacteria (Rizal *et al.*2020). This gene has 1500 base pairs in long (Dickson *et al* 2020).

There are universal primers that integrate with the constant regions of the gene that are similar among all bacteria, through which the microorganism can be diagnosed as a bacterium, as these primers can reveal any bacteria, even if they are not intended in the diagnosis(Verma *et al* 1999)

There are other regions in this gene called hot spots (which are different for all bacterial species) on which the effect of mutations appears(Shepherd *et al* 2022). For example, it is possible that antimicrobial agents affect hot spots in this gene, leading to a change in its phenotypic characteristics related to the organism's resistance to antimicrobial agents without affecting its diagnostic use for bacterial species.

The problems on the basis of which the diagnosis of 16S rRNA gene was preferred over the diagnosis with other tests are: in some organisms, there is no perfect match between the phenotype and the genotype (Clarridge 2004) because there is more than one phenotype for the same genotype(Clarridge 2004; Ceyssens *et al* 2011) and there are also similar genetic patterns, but the phenotype is different (Clarridge 2004)which may occur because of the so-called phenotypic plasticity (Ernande and Dieckmann 2004; Murren *et al* 2015; Gomez-Mestre and Jovani 2013; Hendry2015); 16S rRNA gene is accurate(Lakshmi *et al* 2020) and immediate for identifying the pathogen of serious infections; 16S rRNA gene is the only method for diagnosing bacteria that are difficult to culture (Clarridge 2004) where 16S rRNA gene does not require bacterial culture(Clarridge 2004 ; Aguilera-Arreola *et al* 2016; Sune *et al.* 2020) according to what is called metagenomics (Rizal *et al.* 2020); some bacteria are more expensive to diagnose by other methods than by 16S rRNA gene, and in some cases, bacteria are many, numerous, and diverse, and it is difficult to isolate and purify them in order to diagnose them correctly (Clarridge, 2004).

As well as, some bacteria such as Rickettsia spp. and Coxiella burnetii require intracellular transplantation such as embryonic eggs and some of them, such as Mycobacterium leprae and species of Borrelia, require injection into animals (Rizal *et al.* 2020) and this requires special conditions and

capabilities that may be difficult to achieve for the success of the process in routine laboratories (Wilson et al. 2018 and Chiu and Miller 2019), but, for amplification of 16S rRNA gene, only DNA is required to diagnose this bacterium without culturing it (Rizal et al. 2020). However polymerase chain reaction is the method required to amplify this gene with an affordable price and in a short time.

Polymerase chain reaction

It is the process that depends on the change in temperature to obtain a large amount of DNA from a specific small part of the DNA (Joshi and Deshpande 2011). American scientist Kary Mullis won the Nobel Prize and the Japan Prize in 1993 as a result of his development of the PCR (Joshi and Deshpande 2011; Karnath 2019; Heckmann and Paradisi 2020; Negahdaripour and Pharm 2020; Venegas and Donoso 2022), the basic principle of PCR test was described by researcher Gobind Khorana in 1971, but progress was limited at that time to matters related to that method.

Polymerase chain reaction has become an indispensable technology in forensic medicine and scientific centers. It is widespread because this technique is fast, not very expensive, and does not require obtaining an excellent sample (Joshi and Deshpande 2011), it is successful even if the sample is of poor quality (Joshi and Deshpande 2011; Favrot 2015). The basic principle of this process is to use primers to amplify a specific sequence of DNA (Cahyadi et al 2017).

Name of this method (chain reaction) indicates that one copy gave two copies, then three, then four, and so on. Where, in every step of PCR, the number of copies of DNA increases, and there are enzymes that are responsible for the increase process called polymerases, where these enzymes bind the blocks of the DNA to form the long DNA molecule, and in order to perform its work, the following must be available: 1- The basic building blocks which are four nucleotides cytosine (C), adenine (A), guanine (G), and thymine (T). 2- Primer, which is a short sequence of nucleotides, as the primer binds the nucleotides through the polymerase, where the polymerase enzyme brings the appropriate nucleotide based on the nucleotide present in the old DNA strand. 3- The old DNA strand serves as a template for building the new strand of DNA.

When the aforementioned components are available, the polymerase enzyme can form millions of copies that are completely identical to the original template DNA strand. Sequencing of PCR product can be done later (Joshi and Deshpande 2011). Polymerase chain reaction method depends on the stability of the polymerase enzyme at a high temperature during the replication process (Joshi and Deshpande 2011; Ishino and Ishino 2014). The first of the three PCR steps is denaturation, which occurs at a temperature of 90-97 degrees Celsius, where the two strands of DNA separate at this temperature. The second step, annealing, takes place at temperatures 50-60, where the primers are attached to the template DNA strand to start the extension. As for the third step, extension, it takes place at a temperature of 72 degrees Celsius, where the addition of nucleotides occurs to the end of the primer attached to the template DNA to form a new complementary strand to the template strand. After about 25-30 cycles, a DNA sample that contains many copies identical

to the original DNA sample. is obtained. It is worth noting that DNA polymerase I has failed to link the nucleotides to the end of the primers for the purpose of completing the elongation step. Where the reason is that this enzyme is not stable to the high temperatures required to perform the replication process. Therefore, Taq DNA polymerase isolated from *Thermus aquaticus* bacterium was used in PCR method. *Thermus aquaticus* has the ability to live in volcanoes at a temperature of over 110 degrees Celsius, thus, Taq DNA polymerase enzyme can withstand the required temperatures for the replication process (Joshi and Deshpande 2011). In order to ensure a successful workflow, contamination must be avoided (Joshi and Deshpande 2011; Yuan 2016) when preparing the mixture, adjusting the volumes of the mixture, and ensuring that the conditions of the program that are entered into the device are correct. Taking into account that the cycles do not exceed 35 cycles, as they affect the correct result (Joshi and Deshpande 2011). It can be confirmed whether or not amplification has occurred by taking PCR product and subjecting it to the electrophoresis process (Desjardins and Conklin 2011; Joshi and Deshpande 2011; Mardis and McCombie 2017; Wittmeier and Humme 2022).

Agarose gel electrophoresis

Electrophoresis is the method by which nucleic acids and proteins are separated using an electric current, which is the basic method by which nucleic acids are analyzed and purified in preparation for future studies. When an electric field is applied on the charged particles with a certain charge in an aqueous solution, these particles migrate to the side with the opposite charge, and this is the principle on which electrophoresis is based. The extent of the charges strength of particles, in addition to the applied electric field, is reflected in the migration speed, and thus the migration speed of the particles differs (Westermeier and Freiburg 2005; Tantray et al 2023). Electrophoresis process is performed in media that achieves maintaining the speed to the appropriate extent, it should be mentioned that a gel medium is the best example of such media, as it works as a sieve or as a grille, and there are two types of this medium: agarose and polyacrylamide gels. Size of particles is also one of the factors that determine the speed of their migration (Westermeier and Freiburg 2005). Agarose has many properties, so it is the most widely used in routine laboratories (Li and Arakawa 2019; Tomioka et al 2022). It is a polysaccharide extracted from red algae (Graham et al 2019; Jiang et al 2023). The agarose dissolves in boiling water, when the dissolved agarose is cooled, (Westermeier and Freiburg 2005) a mold of a gelatinous substance permeated with pores is formed (Lira et al 2016), size of these pores varies depending on the agarose concentration, so the pore sizes are small if the agarose concentration is large and vice versa correct. When preparing agarose, either ethidium bromide or SYBR green must be added to it, because without these fluorescent dyes, it is not possible to see the bands of DNA, where using one of these dyes (Westermeier and Freiburg 2005), it is possible to see the DNA bands using ultraviolet light (Haines et al 2015). It must be pointed out that SYBR green is safer than ethidium bromide dye in terms of toxicity or mutagenicity (Westermeier and Freiburg 2005).

To agarose gel electrophoresis is carried out, the following materials and tools must be available:

- 1- Chamber of electrophoresis and power supply.
- 2- Trays made of plastic, which transmits ultraviolet rays.
- 3- Combs to form wells in the gel.
- 4- Buffer of electrophoresis as Tris-borate-EDTA (TBE).
- 5- Fluorescent dyes as ethidium bromide.
- 6- Box of ultraviolet light.

The preparation is done as follow:

- 1- The required weight of the agarose, such as 1 gm, is mixed with the appropriate volume of buffer solution (TPA), which was 100 ml in a flask.
- 2- Melting of mixture is done by boiling using a microwave, the process may take only seconds, provided that the result is a clear solution like water.
- 3- The solution should be allowed to cool to 60°C, and when it reaches that temperature, ethidium bromide should be added with moving the flask to homogenize the solution.
- 4- The ends of tray should be sealed with caps, and the comb must be placed at its right place.
- 5-The cooled solution is poured into the tray and allowed to solidify.
- 6- The end caps are removed and the comb must also be removed carefully so as not to damage the wells.
- 7-The tray with its solidified gel should be placed in chamber of electrophoresis and covered with 1X buffer of electrophoresis .
- 8- Each sample of the PCR product is loaded into its own well in the gel.
- 9- The electrophoresis chamber should be covered and DNA samples should be placed on the negative electrode side of the electrophoresis chamber.
- 10- The power supply must be connected to the electrophoresis chamber for the electrophoresis process to begin.
- 11- After the end of electrophoresis, (Reddy and Raju 2012) the gel is examined under ultraviolet light to see the bands (Reddy and Raju 2012;Badreh et al 2022).

Importance of 16S rRNA gene sequence technique

Sequence technique is the method that is carried out by a sequencing machine based on biochemical methods to determine the sequence of nitrogenous bases in the piece of DNA are required to be analyzed (Heather and Chain 2015; Kchouk et al. 2017).The discovery of the helical structure of DNA by Watson and Crick(Tan and McCoy 2020) and the knowledge of the four bases (A, T, C, G) that make up DNA and how they are arranged (Watson and Crick 1953;Kchouk et al. 2017) made it easy to know the genetic structure of all living organisms. Especially that the genetic makeup became available through the discovery of the so-called DNA sequence (Tourneau et al, 2015; Kchouk et al. 2017; (Lei et al.,2022; Bashar et al.,2022; Qasim et al.,2022; Al-Hchaimi et al.,2022; Mohammed and Qasim, 2022; Lafta et al.,2023).

The problem of not correctly diagnosing the unknown microorganism or the microorganism that was subjected to some conditions that led to suppressing some of its approved activities in phenotypic and biochemical diagnosis was solved by the emergence of genetic sequencing methods for 16S rRNA

gene (Petti et al. 2005). The genetic sequencing method for 16S rRNA gene is the most accurate and reliable method (Chen et al 2014) as well as the popular method (Bailen et al 2020), as it avoids errors that may occur in other tests, such as variation in temperatures, concentrations, isolate size and other working conditions, in addition to that errors that occur in sequencing can be addressed, as well as most of the errors do not have a significant impact on the result (Petti et al. 2005). The sequence of 16S rRNA gene allows comparison between all types of bacteria, being general, by means of which species and subspecies of bacteria can be reached, where this gene is used to survey of communities of bacteria (Edgar 2018; Nagai et al 2023). Gen Bank contains a large number of sequences genes (Strasser 2008; Porter and Hajibabaei 2018; Leraya et al 2019) that can be used as a source for comparison (Benson et al 2013), and the number of sequences for the 16S rRNA gene is about 90,000 sequences that can be compared to reach the diagnosis of bacteria, where the use of 16S rRNA gene to judge or pinpoint the exact bacterial species depends on the (Clarridge 2004) exact sequence of that gene and the relevant sequences available in the databases. (Clarridge 2004;Das et al 2014). Sequencing is done for the gene amplification product, and before sequencing analysis, some important manipulations must be performed, which include filtering low-quality reads to obtain high-quality, accurate reads in order to reach an accurate diagnosis (Rizal et al. 2020). Contamination should also be avoided when amplifying during sequences(Davis et al 2018), as it leads to misdiagnosis. The sealed laboratories, which operate in a one-way workflow system, reduce the problem of contamination and thus ensure the correct diagnosis(Gu et al. 2019).

Conclusion

Morphological and biochemical tests can be used in the initial diagnosis of bacteria in order to confirm them later with a molecular diagnosis that includes the diagnosis of 16S rRNA gene, as relying only on morphological and biochemical methods in the diagnosis may mislead the truth. The main function of 16S rRNA gene is to identify the bacteria in general because it contains the stable regions found in all bacteria, and to identify the species of bacteria in particular because it contains the variable regions specific to each bacterial species. The diagnostic function performed by 16S rRNA gene is not canceled when mutations occur in that gene. Therefore, 16S rRNA gene is the gold standard for the diagnosis of bacteria. Polymerase chain reaction method is fast, not very expensive, and does not require obtaining an excellent sample.

References

1. Abd al-Razzaq A A and Hamim SS 2019. Serological and molecular detection of *Staphylococcus aureus* isolated from UTI patients. University of Thi-Qar Journal 14(4): 17.
2. Abd al-Rida AA, Yasir I K, Swadi A J 2019. The bacteriological study of *Acinetobacter baumannii* isolated from burn patients in al-Nasiriyah city-Iraq. University of Thi-Qar Journal 14(4):26.
3. Aguilera-Arreola MG, Martínez-Peña MD, Hernández-Martínez F, Enriques SRJ, Verdín BR, Majalca-Martínez C, Castro-Escarpulli G,

Albarrán-Fernández E and CeSerrano-López S C 2016. Cultivation-independent approach for the direct detection of bacteria in human clinical specimens as a tool for analyzing culture-negative samples: a prospective study. *SpringerPlus*, 5:332

4. Al-Hilali R and Al-Mozan H 2023. Isolation and identification of Gram negative bacteria that cause diarrhea. *University of Thi-Qar Journal of Science* 10(1):1-6.
5. AL-Joda BMS and Jasim AH 2021. Biochemical Testing Revision For Identification Several Kinds of Bacteria. *Journal of University of Babylon for Pure and Applied Science*, 29(2): 168-176.
6. Al-Mozan HDK 2021. Molecular detection of enterotoxins genes in *Staphylococcus aureus* isolated from clinical and dairy samples. A thesis submitted to the college of science/ University of Basrah:1-131.
7. Al-Mozan HDK and Al-Amara SSM 2020. The nuc gene as a potent source for *Staphylococcus aureus* to resist thermal processes. *International Journal of Pharmaceutical Research* 12(2): 4614-4617.
8. Al-Yousif N A 2022. Distribution, occurrence and molecular characterization of *Bacillus* related species isolated from different soil in Basrah Province, Iraq. *Biodiversitas Journal of Biological Diversity* 23(2):679-686.
9. Aminollah BI, and Supriyanto A (2016). Isolasi dan Identifikasi Bakteri Patogen *Escherichia coli* Dan *Salmonella* sp pada Kotoran Kelelawar di Gua Pongangan, Gresik dan Gudang Talun Bojonegoro, Jawa Timur, in: Prosiding Seminar Nasional. Surabaya. Available at: <http://biologi.fst.unair.ac.id/wp-content/uploads/2016/10/Aminollah.pdf>
10. Amutha K, and Kokila V 2014. PCR Amplification, Sequencing of 16S rRNA Genes with Universal Primers and Phylogenetic Analysis of *Pseudomonas aeruginosa*. *International Journal of Science and Research*, 3(8):257-261.
11. Anahtar MN, Bowman BA, Kwon DS 2016. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization. *Journal of Visualized Experiments*, (110), e53939, doi:10.3791/53939
12. Aryal, S. (2018a). Methyl Red (MR) Test - Principle, Procedure and Result Interpretation. <https://microbiologyinfo.com/methyl-red-mr-test-principle-procedure-and-result-interpretation/>
13. Aryal, S. (2018b). Voges-Proskauer (VP) Test - Principle, Reagents, Procedure and Result. <https://microbiologyinfo.com/voges-proskauer-vp-test-principle-reagents-procedure-and-result/>
14. Ayeni FA, Gbarabon T, Andersen C, Nørskov-Lauritsen N. 2015. Comparison of identification and antimicrobial resistance pattern of *Staphylococcus aureus* isolated from Amassoma, Bayelsa state, Nigeria. *African Health Sciences* 15(4):1282-1288. DOI10.4314/ahs.v15i4.30.
15. Badreh F, Jahanbin K, Khodadadi A, Zadeh AK, Sharifat M, Khayati M, Rashno M 2022. Homemade 100 Pair Base DNA Ladder Based on Bacterial Plasmid pMAL-C2X. *Pharmacogenom Pharmacoproteomics*, 14 (3): 1-4.
16. Bailen M, Bressa C, Larossa M, and Gonzales-Sontero R. 2020. Bioinformatic strategies to address limitations of 16rRNA short-read amplicons from different sequencing platforms. *Journal of Microbiological Method*, 169, 105811.
17. Beden MW and Mousa H M 2022. Bacteriuria with Unusual Uropathogens in Diabetics in Thi-Qar Province. *University of Thi-Qar Journal of Science* 9(1):43-48.
18. Benson DA. et al. 2013. GenBank. *Nucleic Acids Res.* 41, D36-D42.
19. Burillo A and Bouza E 2014. Use of rapid diagnostic techniques in ICU patients with infections. *BMC Infectious Diseases* 14:1-12.
20. Cahyadi M i, Puruhita, Barido F H, and Hertanto B S 2017. Specific primer design of mitochondrial 12S rRNA for species identification in raw meats. *IOP Conf. Series: Earth and Environmental Science* 102,012038.doi:10.1088/17551315/102/1/012038
21. Ceyssens P, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Leonid Kulakov L, Nino Lashkhi N, Tediashvili M and Merabishvili M 2011. Phenotypic and genotypic variations within a single bacteriophage species. *Virology Journal*, 8: 134. <http://www.virologyj.com/content/8/1/134>
22. Chen L, Cai Y, Zhou G, Shi X, Su J, Chen G and Lin K 2014. Rapid Sanger Sequencing of the 16S rRNA Gene for Identification of Some Common Pathogens. *PLoS One*. 9(2): e88886 doi: 10.1371/journal.pone.0088886
23. Chiu CY and Miller SA 2019. Clinical metagenomics. *Nat. Rev. Genet.* 20: 341-355.
24. Clarridge JE 2004. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. *CLINICAL MICROBIOLOGY REVIEWS* 17(4): 840-862.
25. Das S, Dash HR, Mangwani N, Chakraborty J and Kumari S 2014. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. *Journal of Microbiological Methods* 103: 80-100.
26. Davis NM, Proctor DM, Holmes SP, Relman DA and Callahan BJ 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome*, 6:226. <https://doi.org/10.1186/s40168-018-0605-2>
27. Desjardins RP, Conklin DS 2011. Microvolume quantitation of nucleic acids. *Curr. Protoc. Mol. Biol.* 93(1), 3J.
28. Devlynne S, Ondusko MD, Dawn Nolt, MD 2018. *Staphylococcus aureus*. Oregon Health & Science University, Portland, 39(6):287-298.
29. Dhahir, A.W. (2023). Genotypic Characterization of Bacteria isolated from intensive care units in Basrah hospitals. A thesis submitted to the council of college of science, university of Basrah.
30. Dickson R P et al. 2020. Lung microbiota predict clinical outcomes in critically ill patients. *Am. J. Respir. Crit. Care Med.* 201(5), 555-563.

31. Edgar RC 2018. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. *Bioinformatics*, 34(14): 2371-2375. doi: 10.1093/bioinformatics/bty113
32. ELMA LL, ALBERTO F, DE OLIVEIRA JR, FILLIPE L.R, CARMO D, BERKOVA N, BARH D, PREETAM GHOSH P, and AZEVEDO V 2020. Bacteriocins as an alternative in the treatment of infections by *Staphylococcus aureus*. *An Acad Bras Cienc*, 92(2):1-17.
33. Ernande B and Dieckmann U 2004. The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics. *J. EVOL. B IOL.* 17: 613-628.
34. Favrot C 2015. Polymerase chain reaction: advantages and drawbacks. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: <https://doi.org/10.5167/uzh-116536>
35. Fernández-Barat L, López-Aladid R. and Torres A 2020. Reconsidering ventilator-associated pneumonia from a new dimension of the lung microbiome. *EBioMedicine* 60, 102995.
36. Gee JE, De BK, Levett PN, Whitney AM Novak RT and Popovic T 2004. Rapid Confirmatory Identification of Use of 16S rRNA Gene Sequencing for *Brucella* Isolates. *J. Clin. Microbiol.* 2004, 42(8):3649. DOI:10.1128/JCM.42.8.3649-3654.2004.
37. Ghannam MG, and Varacallo M 2023. Biochemistry, Polymerase Chain Reaction. National Library of Medicine, <https://www.ncbi.nlm.nih.gov/books/NBK535453/>
38. Gomez-Mestre I and Jovani R. 2013. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. *Proceedings of the Royal Society B* 280:20131869
39. Goswami K, Chen C, Xiaoli L, Eaton KA Dudley EG 2015. Coculture of *Escherichia coli* O157: H7 with a Nanopathogenic *E. coli* strain increases toxin production and virulence in a germfree mouse model. *Infection and Immunity* 83(11): 4185- 4193.
40. Graham S, Marina PF, Blencowe A. 2019. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. *Carbohydr Polym.* 207, 143-159.
41. Gu W, Miller S, Chiu CY 2019. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. *Annu. Rev. Pathol.* 14: 319-338.
42. Haines AM, Tobe S, Kobus HJ, Linacre A 2015. Properties of nucleic acid staining dyes used in gel electrophoresis. *Electrophoresis* 36(6): 941-944.
43. Hartline, R 2023. **MICROBIOLOGY LABORATORY MANUAL**. LabreTexts. <https://LibreTexts.org>
44. Heather JM, and Chain B 2015. The sequence of sequencers: The history of sequencing DNA. *Genomics* 107: 1-8. <http://dx.doi.org/10.1016/j.ygeno.2015.11.003>.
45. Heckmann CM and Paradisi F 2020. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. *ChemCatChem* , 12: 6082-6102. doi.org/10.1002/cctc.202001107
46. Hemraj V, Diksha S and Avneet G 2013. A REVIEW ON COMMONLY USED BIOCHEMICAL TEST FOR BACTERIA. *Innovare Journal of Life Science*, 1(1):1-7.
47. Hendry AP 2015. Key questions on the role of phenotypic plasticity in eco evolutionary dynamics. *Journal of Heredity* 107:25-41.
48. Hunt K, Vacelet M and Jordan K 2017. Determination of *Listeria monocytogenes* numbers at less than 10 cfu/g. *Irish Journal of Agricultural and Food Research*, DOI: 10.1515/ijaf-2017-0004 IJAFR • 56(1) :25-30.
49. Igbenegehu O and Lamikanra A 2014. The bacteriological quality of different brands of bottled water available to consumers in Ile-Ife, south- western Nigeria. a *BMC Research Notes* 7:859.
50. Irwan JM, Anneza LH, Othman N, Husnul T and Alshalif AF 2016. Isolation and Identification of Concrete Environment Bacteria. *IOP Conf. Series: Materials Science and Engineering* 136, 012088 doi:10.1088 /1757-899X/136/1/012088
51. Ishino S, and Ishino Y 2014. DNA polymerases as useful reagents for biotechnology – the history of developmental research in the field, *Front Microbiol.* 2014; 5: 465. doi: 10.3389/fmicb.2014.00465
52. Jang J , Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T and Ishii S 2017. Environmental *Escherichia coli*: ecology and public health implications—a review. *Journal of Applied Microbiology*, 123, 570—581.
53. Jeong T, Hong H, Kim MS, Song M, and Myung H 2023. Characterization of Three Different Endolysins Effective against Gram-Negative Bacteria. *Viruses*, 15, 679. <https://doi.org/10.3390/v15030679>.
54. Jesumirhewe C J, Ogunlowo PO, Olley M, Springer B, Allerberger F and Ruppitsch W 2016. Accuracy of conventional identification methods used for Enterobacteriaceae isolates in three Nigerian hospitals. *PeerJ*, DOI 10.7717/peerj.2511
55. Jiang F, Xu X, Chen F, Weng H, Jun Chen J, Ru Y, Xiao Q and Xiao A 2023. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. *Mar. Drugs* , 21: 299. <https://doi.org/10.3390/md21050299>
56. Joshi, M and Deshpande J.D 2011. **POLYMERASE CHAIN REACTION: METHODS, PRINCIPLES AND APPLICATION**. *International Journal of Biomedical Research*, 1(5): 81-97.
57. Karnath L 2019. **EDITORIAL Remembering Dr. Kary Mullis— Inventor of PCR. MOLECULAR FRONTIERS JOURNAL**, 3(2).
58. Kaushal J, Mehandia S, Singh G, Raina A, Arya S K.2018. Catalase enzyme: Application in bioremediation and food industry. *Biocatalysis and Agricultural Biotechnology*, 16: 192-199.
59. Kchouk M, Gibrat J and Elloumi M 2017. Generations of Sequencing Technologies: From First to Next Generation. *Biol Med*, 9 (3): 1-8.
60. Kshikhundo R, and Itumhelo S 2016. Bacterial species identification. *World News of Natural Sciences*, 3: 26-38.
61. Lakshmi P, Bharadwaj A and Srivastava RK 2020. Molecular Detection and Identification of Bacteria in Urine Samples of Asymptomatic and Symptomatic

Pregnant Women by 16S Rrna Gene Sequencing. *Arch Clin Infect Dis.* 15(3) :e101136.doi:10.5812/archcid.101136.

62. Leraya M, Knowlton N, Hoc S, Bryan N, Nguyen BN, and Machida RJ 2019. GenBank is a reliable resource for 21st century biodiversity research. *ENVIRONMENTAL SCIENCES*, 116(45): 22651–22656. www.pnas.org/cgi/doi/10.1073/pnas.1911714116

63. Li C and Arakawa T 2019. Agarose native gel electrophoresis of proteins. *Int. J. Biol. Macromol.* 140: 668–671.

64. Lindner MS, Renard BY 2013. Metagenomic abundance estimation and diagnostic testing on species level. *Nucleic Acids Res*, 1(1):10–10.

65. Lira RB, Steinkuhler J, Knorr R.L, Dimova R, Riske KA 2016. Posing for a picture: Vesicle immobilization in agarose gel. *Sci. Rep.* 6: 25254.

66. Mai-Prochnow A, Clauson M, Hong, J and Murphy AB 2016. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. *Scientific Reports* | 6:38610 | DOI:10.1038/srep38610

67. Mardis E, McCombie WR 2017. Library quantification: fluorometric quantitation of double-stranded or single-stranded DNA samples using the Qubit system. *Cold Spring Harb. Protoc.* (6),pdb.prot094730

68. Marx V 2016. PCR: the price of infidelity. *Nature Methods*. U.S. Food & Drug Administration, 13:475–479. DOI: 10.1038/nmeth.3868

69. Maurer FM, Christner M, Hentschke M, Rohde H 2017. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs. *Infectious Disease Reports* 9:18–27.

70. Muktaf A Q 2022. Effect of hot aqueous and ethanolic extracts of two algae species (Phaeophyta) on some pathogenic bacteria isolated from patients. A thesis submitted to the college of science/ University of Thi-Qar:1-118.

71. Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H, Pfennig DW, Relyea RA, Seiter S, Snell-Rood E, Steiner UK and Schlichting CD 2015. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. *Heredity*, 115, 293–301; doi: 10.1038/hdy.2015.8

72. Nagai T, Shiba T, Komatsu K, Watanabe T, Nemoto T, Maekawa S, Kobayashi R, Matsumura S, Ohsugi Y, Katagiri S, Takeuchi Y, Iwata T 2023. Optimal 16S rRNA gene amplicon sequencing analysis for oral microbiota to avoid the potential bias introduced by trimming length, primer, and database. DOI: <https://doi.org/10.21203/rs.3.rs-3139837/v1>

73. Negahdaripour M and PharmD 2020. Fifty Years of Witnessing Biomedical Science Developments. *Iran J Med Sci* November, 45 (6).

74. Petti C A, Polage C R, Schreckenberger P (2005). The Role of 16S rRNA Gene Sequencing in Identification of Microorganisms Misidentified by Conventional Methods. *JOURNAL OF CLINICAL MICROBIOLOGY* 43 (12): 6123–6125.

75. Porter TM and Hajibabaei M 2018. Over 2.5 million COI sequences in GenBank and growing. *PLoS One* 13, e0200177

76. Public Health England. 2018. UK Standards for Microbiology Investigations. Issued by the Standards Unit, Public Health England, 4:12

77. Putria I, Jannah SN and Purwantisaria S 2020. Isolation and characterization of lactic acid bacteria from *Apis mellifera* and their potential as antibacterial using in vitro test against growth of *Listeria monocytogenes* and *Escherichia coli*. *NICHE Journal of Tropical Biology*, 3(1): 26-34.

78. Qazangi MO and Jabr AH 2017. Molecular Biology. 1th Edition, Iraq, University of Baghdad – Science of Agriculture, 1-436.

79. Qazangi MOM 2017. Practical experiments in microbiology. 1th Edition, Iraq, University of Baghdad – Science of Agriculture : 1-138.

80. RASHEED MU, THAJUDDIN N, AHAMED P, TEKLEMARIAM Z, and JAMIL K 2014. ANTIMICROBIAL DRUG RESISTANCE IN STRAINS OF *Escherichia coli* ISOLATED FROM FOOD SOURCES. *Med. Trop. Sao Paulo*, 56(4): 341–6.

81. Reddy PR and Raju N (2012). Gel-Electrophoresis and Its Applications, *Gel Electrophoresis - Principles and Basics*, Sameh Magdeldin , ISBN: 978-953-51-0458-2, InTech, Available from: <http://www.intechopen.com/books/gel-electrophoresis-principles-and-basics/> gelectrophoresis andits applications

82. Rizal NSM, Ramli R, Periyasamy PR, Tan TL, Nathan S, Saw SH, Khor BY 2020. Advantages and Limitations of 16S rRNA Next-Generation Sequencing for Pathogen Identification in the Diagnostic Microbiology Laboratory: Perspectives from a Middle-Income Country. *Diagnostics* 816: 1-19. doi:10.3390/diagnostics10100816

83. Romaniuk J A. H. and Cegelski L 2015. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. the Royal Society, <http://dx.doi.org/10.1098/rstb.2015.0024>

84. Shanmugaraj C, Anokhe A, and Kalia V 2021. Determination of Fermentation Pathway by Methyl Red and Voges Proskauer (MRVP) Test. *AgriCos e-Newsletter*,2(11):41-43.

85. Shepherd M.J, Horton J.S, and Taylor T.B 2022. A Near-Deterministic Mutational Hotspot in *Pseudomonas fluorescens* Is Constructed by Multiple Interacting Genomic Features. *Mol. Biol. Evol.* 39(6):1-7. <https://doi.org/10.1093/molbev/msac132>

86. Silhavy TJ, Kahne D, Walker S 2010. The bacterial cell envelope. *Cold Spring Harbor Perspectives in Biology* 2, a000414. doi: 10.1101/cshperspect.a000414.

87. Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL and Lynch SV 2015. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. *PLOS ONE* | DOI:10.1371/journal.pone.0117617

88. Strasser B J 2008. GenBank—Natural history in the 21st century? *Science* 322: 537–538

89. Sune D, Rydberg H, Augustinsson ÅN, Serrander L, Jungeström MB 2020. Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. *J. Microbiol. Methods* 170: 105854.

90. Tan SY and McCoy AN 2020. James Dewey Watson (1928–): Co-discoverer of the structure of DNA. *Singapore Med J* 61(10): 507–508. doi: 10.11622/smedj.2020145

91. Tantray J.A, Mansoor S, Wani R.FC, Nissa NU 2023. Chapter 24—Agarose gel electrophoresis. In *Basic Life Science Methods*; Academic Press: Cambridge, MA, USA: 103–106.

92. Tomioka Y, Arakawa T, Akuta T, Nakagawa M, Ishibashi M 2022 . Analysis of proteins by agarose native gel electrophoresis in the presence of solvent additives. *Int. J. Biol. Macromol*, 198, 26–36.

93. Tourneau L , Christophe, Kamal, Maud 2015. Pan-cancer integrative molecular portrait towards a new paradigm in precision medicine. Springer.

94. Tran Q, Pham D, and Phan V 2017. Using 16S rRNA gene as marker to detect unknown bacteria in microbial communities. *BMC Bioinformatics*, 18(14):499.

95. Venegas CN, and Donoso PC 2022. Some details in the study of viruses that affect to small animals. *GSC Advanced Research and Reviews*, 10(03): 019–024.https://doi.org/10.30574/gscarr.2022.10.3.0068

96. Verma A, Sampla AK, and Tyagi JS 1999. *Mycobacterium tuberculosis* promoters: differential usage and growth rate dependent control. *J Bacteriol* 181:4326–4333

97. Watson JD, Crick FH 1953. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. *Nature* 171: 737–738.

98. Westermeier R and Freiburg 2005. Gel Electrophoresis. *ENCYCLOPEDIA OF LIFE SCIENCES*, John Wiley & Sons, Ltd. www.els.net doi: 10.1038/npg.els.0005335

99. Wikström M , Krab K and Sharma V 2018. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. *Chem. Rev.* 118: 2469–2490

100. Wilson ML, Fleming KA, Kuti MA, Looi LM, Lago N, Ru K 2018. Access to pathology and laboratory medicine services: A crucial gap. *Lancet* 391, 1927–1938.

101. Wittmeier P, and Humme S 2022. Agarose gel electrophoresis to assess PCR product yield: comparison with spectrophotometry, fluorometry and qPCR. *BioTechniques* 72: 155–158.10.2144/btn-2021-0094

102. Yuan Hu 2016. Regulatory Concern of Polymerase Chain Reaction (PCR) Carryover Contamination .http://dsx. doi.org/10.5772/66294

103. Lei, Z., Alwan, M., Alamir, H. T. A., Alkaaby, H. H. C., Farhan, S. S., Awadh, S. A., ... & Nekuei, A. (2022). Detection of abemaciclib, an anti-breast cancer agent, using a new electrochemical DNA biosensor. *Frontiers in Chemistry*, 10, 980162.

104. Bashar, B. S., Kareem, H. A., Hasan, Y. M., Ahmad, N., Alshehri, A. M., Al-Majdi, K, ... & Qasim, M. T. (2022). Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. *Frontiers in Chemistry*, 10, 1014731.

105. Qasim, M. T., Fenjan, M. N., & Thijail, H. A. (2022). Molecular identification of *cystoisospora belli* in patients infected with the virus human immunodeficiency. *International Journal of Drug Delivery Technology*, 12(2), 701-704.

106. Al-Hchaimi, H. A., Alhamaidah, M. F., Alkhafaji, H., Qasim, M. T., Al-Nussairi, A. H., & Abd-Alzahra, H. S. (2022, October). *Intraoperative Fluid Management for Major Neurosurgery: Narrative study*. In *2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)* (pp. 311-314). IEEE.

107. Mohammed, Z., & Qasim, M. T. (2022). *The Relationship between Insulin Resistance and Hypertension in Patient with Hypertensive Hiv Nursing*, 22(2), 1659-1663.

108. Lafta, H. A., AbdulHussein, A. H., Al-Shalah, S. A., Alnassar, Y. S., Mohammed, N. M., Akram, S. M., ... & Najafi, M. (2023). *Tumor-Associated Macrophages (TAMs) in Cancer Resistance; Modulation by Natural Products. Current topics in medicinal chemistry*.